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Abstract-Strain is an important component of the total displacement field in the emplacement of a thrust sheet. 
The finite strain tensor in a penetratively deformed thrust sheet is a spatial variable. I describe a method for 
quantitative estimation of the finite strain variation in thrust sheets by applying spatial statistics analysis on strain 
data collected from a part of the Sheeprock thrust sheet, in the southern Sheeprock Mountains and the West Tintic 
Mountains, north-central Utah. Strain was measured in the quartzites of the Sheeprock thrust sheet and the spatial 
statistics method is illustrated using the X/Z strain axial ratios. 

The Sheeprock thrust sheet was penetratively deformed during Sevier-age fault propagation folding. I quantified 
finite strain from quartzites using the modified normalized Fry method and calculated the three-dimensional strain 
ellipsoid from the quartzites using three orthogonal thin-sections from each oriented field sample. The variation of 
finite strain in the Sheeprock thrust sheet was best represented by an exponential semivariogram model, which I 
used to predict values of strain from unsampled locations by ordinary kriging. Cross-validation showed that, in 
general, the predicted and measured values show good agreement (within 1% ofeach other). The sampled space was 
contoured using the measured and predicted strain values to obtain a detailed finite strain variation pattern in a part 
of the Sheeprock thrust sheet. ST> 1998 Elsevier Science Ltd. All rights reserved. 

INTRODUCTION 

Finite strain data are an important part of the data set 
that must be collected to understand the kinematic 
history of fold-and-thrust belts. Application of the 
critically-tapered wedge model (Davis et al., 1983) to the 
study of the geometry and kinematics of thrust belts 
(Boyer, 1995) suggests that the magnitude of internal 
shortening or finite strain in thrust sheets should reflect 
the geometry and nature of the original sedimentary 
wedge. If low finite strain values are observed in a thrust 
sheet, a high initial wedge taper is indicated for the 
sedimentary prism from which the fold-and-thrust belt 
evolved (Boyer, 1995; Mitra, 1997). High finite strain 
values, however, indicate that internal shortening had to 
occur to build critical wedge taper before thrusts could be 
emplaced. Basins or portions of basins with higher initial 
wedge taper produce thrust belts with fewer thrusts 
having larger individual displacements, lower magnitude 
of internal shortening, greater width and faster rates of 
frontal advance (Boyer, 1995). 

Finite strain data are also important in the construc- 
tion of retrodeformable balanced cross-sections 
(Schwerdtner, 1977; Hossack, 1978, 1979; Woodward et 
al., 1986; Protzman and Mitra, 1990; Mitra, 1994; 
McNaught and Mitra, 1996). A complete restoration of 
any balanced cross-section should involve undoing the 
total displacement field (Fig. 1). Most restorations, 
however, only account for the translation and rotation 
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components and ignore the penetrative internal deforma- 
tion of thrust sheets. This can lead to large errors in 
restoration, particularly if the thrust sheet was part of a 
deforming sub-critical sedimentary wedge (Mitra, 1994). 
The most accurate restorations are obtained by retro- 
deforming the deformation profile incrementally using 
the strain history of the thrust sheet as a guide (Groshong 
et al., 1984; Woodward et al., 1986; McNaught, 1990; 
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TRANSLATION GENERAL DEFORMATION 

Fig. 1. The main components of the displacement field for emplacement 
of a thrust sheet [after Mitra (1994)]. The pure strain component is 
usually not removed in the construction of retrodeformable cross- 

sections. 
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Evans and Dunne, 1991; Mitra, 1994; McNaught and 
Mitra, 1996). If incremental strain data are unavailable, 
inclusion of finite strain data in the restoration process is 
the next best option. 

Once we understand the importance of collection and 
inclusion of strain data in fold-and-thrust belt studies, we 
must decide on the best way to collect, organize and use 
strain data. How strain varies in thrust sheets determines 
how strain data must be collected and analyzed. For 
small variations in the distribution of finite strain values 
within a thrust sheet, finite strain quantification from a 
few samples from different locations within the sheet 
would be sufficient; we could use their mean value (along 
with the standard deviation) as representative for the 
thrust sheet. However, detailed strain analyses in thrust 
sheets (Hossack. 1968, 1978; Coward and Kim, 1981; 
Ramsay ct ~11.. 1983; Craddock, 1992; McNaught and 
Mitra, 1996) have revealed that, in general, there is 
considerable variation in finite strain values within 
individual thrust sheets (Mitra, 1994). Thus, there is a 
need to estimate the spatial variability of strain in a thrust 
sheet. 

In the past, the characteristics of strain and strain 
variation in thrust sheets across fold-and-thrust belts 
have been examined in a number of different ways: 

(I) The simplest approach is to select one or more 
samples from each thrust sheet as representative 
sample(s) and quantify mean strain from them. 
However, this approach suffers from the basic 
drawback that the strain values are treated as a batch of 
numbers, and no account of spatial variability of the data 
set is made. 

(2) A somewhat better approach is one that takes into 
account spatial variability of the strain data by plotting 
the magnitude and direction of the long axis of the strain 
ellipses measured at sample sites (Ramsay et oi.. 1983). 
This gives a qualitative estimate of strain variation in the 
thrust sheet. A further improvement on the method is to 
contour the sampled space using the plotted values (e.g. 
Coward and Kim, 1981). With a small data set. we must 
make simplifying assumptions about the strain variation. 
For example, assuming strain compatibility (Cutler and 
Elliott, 1983) and a simple displacement geometry such as 
inhomogeneous simple shear parallel to the fault. allows 
two measurements to completely define the pure strain 
within a thrust sheet (Cutler and Cobbold. 1985). 
However. most natural thrust systems exhibit complex 
strain patterns. and the complexity increases from 
external to internal sheets. Thus, a large data set is 
required to quantify strain variation within a thrust sheet. 
The data can be fdctoriled using simple displacement 
geometries, e.g. the finite strains within the Moine thrust 
sheet in NW Scotland were factorized into simple shear 
and longitudinal strain components to examine the 

variations of these strains (Coward and Kim. 1981). 
Alternatively, detailed strain data can be collected, and 
subsequent data analysis may reveal the displacement 
geometry, e.g. inhomogeneous simple shear (parallel to 
the fault) in the Helvetic nappes of western Switzerland 
(Ramsay et ul., 1983). 

(3) A further improvement on method (2) can be made 
by actually quantifying not only the strain in the thrust 
sheet but also its spatial variability. The mathematical 
function representing the strain variation in thrust sheets 
could then be used to predict values of strain from 
anywhere in the sampled area by kriging without making 
any assumptions about the displacement geometry. The 
sampled space can then be contoured using the values 
obtained from kriging analysis. This is the spatial 
statistics approach presented in this paper. While 
contouring of the measured strain data can be done 
using any other interpolation method ranging from 
simple, qualitative hand contouring to using contouring 
packages which use more quantitative interpolation 
algorithms (e.g. Nearest Neighbor Interpolation. Linear 
Interpolation, Kernel Smoothing and Weighted Fill), it is 
universally acknowledged that interpolation using 
kriging is best (e.g. lsaaks and Srivastava. 1989; Cressie, 
1993) since kriging has a number of advantages over 
other interpolation methods. These arc as follows: 

(i) Smoothing: Kriging smoothes, or regresses. esti- 
mates based on the proportion of total sample variance 
accounted for by random ‘noise’. The noisier the data set, 
the less individual samples represent their immediate 
vicinity, and the more they are smoothed. 

(ii) Declustering: The kriging weight assigned to a 
sample is lowered to the degree to which its information is 
duplicated by nearby, highly correlated samples. This 
helps mitigate the impact of oversampling ‘hot spots’. 

(iii) Anisotropy: When samples are more highly 
correlated in a particular direction, kriging weights will 
be greater for samples in that direction. 

(iv) Precision: Given a variogram representative of the 
area to be estimated, kriging will compute the most 
precise estimates possible from the available data. 

The objective of the spatial statistics method is not 
merely to create the most accurate contoured plot from 
measured strain values; the method quantifies strain 
variation in thrust sheets and uses the results to predict 
strain values from unsampled locations at any point 
within the sample area, thereby creating a quantitative 
data set that can be used in many different ways. For 
example, the data set can scrvc as the ‘real world’ 
constraint on numerical models of fold-and-thrust belt 
evolution, or it can be used to develop three-dimensional 
cross-section balancing techniques particularly for inter- 
nal parts of fold-and-thrust belts. This aspect of the 
technique is what makes it more attractive when 
compared to simpler techniques such as hand contouring 
or contouring a data set generated using simpler 
interpolation algorithms. Finite strain data from the 
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Fig. 2. Simplified map of the Sevier fold-and-thrust belt in Idaho- 
Wyoming and northern Utah. Three salients separated by transverse 
zones are shown along with the positions of the major thrusts in the 
area. Symbols: SLC, Salt Lake City; TL, Tooele; PR, Provo; NP, Nephi. 

Sheeprock thrust sheet are used to illustrate the method. 
Interpretation of the strain data in the Sheeprock thrust 
sheet and its implications in cross-section retrodeforma- 
tion in internal thrust sheets has been published 
separately in a companion paper (Mukul and Mitra, 
1998~). The aim of this paper is to present the spatial 
statistics method. 

The Sheeprock thrust sheet 

The Sheeprock thrust sheet is an internal thrust sheet in 
the Charleston-Nebo (Provo) salient of the Sevier fold- 
and-thrust belt in north-central Utah (Fig. 2). The 
geometry of the thrust sheet is dominated by first-order 
fault propagation folds related to thrusting associated 
with the Cretaceous Sevier Orogeny (Mukul and Mitra, 
1994, 1998a,b, submitted). High-angle breakthrough of 
the Sheeprock thrust through the fault propagation 
antiform-synform pair produced a footwall synform. 
Fault propagation folding in the sheet was followed by 
fault-bend folding on a ramp in the Sheeprock thrust. 
Finally, the Sheeprock thrust and the thrust sheet were 
folded by fault bend folding on a ramp in a younger fault 
[Midas thrust (?)] (Mukul and Mitra, 1994, submitted; 
Mitra, 1997). The overall structure of the Sheeprock 
thrust sheet, as viewed in a down-plunge projection, is 
shown in Fig. 3. Cleavage observed in the sheet is mostly 
related to the shortening that produced fault-propaga- 
tion folding in the sheet and slip along the fault (Mukul 
and Mitra, 1994). Microstructural analysis in the 
quartzites indicates that dislocation creep was the 
dominant deformation mechanism in both the hanging 
wall (Sussman and Mitra, 1993) and the footwall of the 
Sheeprock thrust, and the depth of detachment in the 

I I I I 

1.10 1.20 1.30 1.40 1.50 

X/Z Ratio 

Fig. 3. Composite downplunge projection of the structure of the 
Sheeprock thrust sheet. The distribution of X/Z axial ratios in down- 
plunge view (along axis 4”, 325”) is also shown (boxed) by an 
interpolated image diagram. X/Z axial ratios increase from the middle 
to the base of the sheet near the Sheeprock thrust. A high strain zone is 
also seen near the hinge of the overturned fault propagation antiform 
seen in the hanging wall of the Sheeprock thrust. Symbols: B, Basement, 
ST, Sheeprock thrust, SAT, Sabie Mountain thrust. Patterns used in the 

figure here are explained in Fig. 5. 

internal part of the salient was below the depth of brittle- 
ductile transition for quartzites (Mukul and Mitra, 
submitted). Recovery continued in the footwall even 
after the deformation had ceased (Mukul and Mitra, 
submitted). 

QUANTIFICATION OF FINITE STRAIN FROM 
THE SHEEPROCK THRUST SHEET 

The strain ellipsoid contains three principal sections 
that define the principal strain ellipses; each can be 
represented as a vector whose magnitude is the corre- 
sponding axial ratio (e.g. the X/Z axial ratio for XZ 
principal strain ellipse) and whose direction is the 
orientation of the long axis of the ellipse being considered 
(Fig. 4). Ideally, the actual magnitudes of the principal 
axes X, Y and Z of the strain ellipsoid should be used as 
the magnitudes of three vectors used to represent the 
strain ellipsoid. However, in geological situations, only 
axial ratios of ellipses are commonly available. 

The Sheeprock thrust sheet is dominated by Proter- 
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Fig. 4. Geometric representation of the strain tensor by the strain 
ellipsoid. Three principal sections of the ellipsoid are ellipses; XY. XZ. 
and YZ planes. The ellipses may be visualized as vectors; the magnitude 
of the vector is given by the axial ratio between the long and short axes 

of the ellipse and the direction by the orientation of the long axis. 

ozoic quartzites (Fig. 5). Finite strain could be measured 
in these quartzites using the center to center Fry 
Method (Fry, 1979; Erslev, 1988; Erslev and Ge, 1990; 
McNaught, 1994) to calculate the three-dimensional 
strain ellipsoid from quartzite samples. 

The center-to-center Fry technique 

Fry (1979) developed the Fry method for quantifica- 
tion of strain from aggregates of grains based on the 
distribution of object centers. Erslev (1988) developed the 
normalized Fry technique to eliminate effects of two- 
dimensional grain size on the initial object center 
distribution. which causes scatter on a Fry plot. Erslev 
and Ge (1990) developed the INSTRAIN 3.0 program 
for constructing a normalized Fry plot by approximating 
each object in an aggregate by a least-squares, best-fit 
ellipse. McNaught (1994) recognized that the least- 
squares best-fit ellipse approach (Erslev and Ge, 1990) 
for approximating grains can run into serious problems 
when attempting to approximate non-elliptical grains 
and suggested approximating non-elliptical grains by 
polygons instead and came up with the modified normal- 
ized Fry Method instead. He developed the 
ANGGRAIN 1. I program for constructing a normalized 
Fry plot from co-ordinates of centers of objects and their 
area using the above approach. McNaught (1994) also 
suggested the use of an image analyzer to calculate the 

v 

E; 
dN 
UC 
ad 
aw 
3b 

0 
!zi 
a 

Fig. 5. Composite and stmplified stratigraphy of the southern 
Sheeprock Mountains and the adjacent West Tintic Mountains [after 
Christie-Blick (1983) and Pampeyan (1989)]. Patterns shown for 
different stratigraphic units in the figure also serve as the key to patterns 

used in Figs 3 and 7. 

center and area of objects to make the process more 

efficient. 

Computing the,finite strain ellipsoids in the yuart-_ites,fi^on~ 
the Sheeprock sheet 

I used the modified normalized Fry technique 
(McNaught, 1994) to measure finite strain in the 
quartzites from the Sheeprock thrust sheet since indivi- 
dual quartz grains in the quartzites are non-elliptical 
(Fig. 6) and the least-squares best-fit ellipse approach 
(Erslev, 1988; Erslev and Ge, 1990) would lead to 
significant errors in grain approximation and calculation 
of grain centers and area (McNaught, 1990, 1994). The 
detailed methodology used in computing the finite strain 
ellipsoids from the quartzites at each sample site in the 
Sheeprock sheet is described in the Appendix. 

THE SPATIAL STATISTICS METHOD 

Finite strain values in a thrust sheet are, typically, the 
end result of a number of processes whose complex 
interactions cannot be described quantitatively. 
Although these processes and their interaction are 
systematic, they are too complex for us to sort out given 
the present state of our knowledge. As a result, there is 
uncertainty about how these processes behave between 
sample locations. In such a situation, where a determi- 
nistic approach to understanding the processes is impos- 
sible, we may treat the complexity of the processes as 
apparently random behavior and use probabilistic 
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(b) Itnm 
Black and white tracing of quartz grains (a) from a quartzite sample in the Sheeprock thrust sheet prepared from a 

micrograph of a thin section (b). This drawing is captured by the camera in the JAVA image analysis system. A file 
ntaining the grain center and the area of each grain is created which is input into ANNGRAIN (McNaught, 1994). 

.ecognize these uncertainties to look at the generalized model, I considered the thrust sheet as a 
nite strain in thrust sheets. three-dimensional space (R3) and the sampled area in the 

thrust sheet as index set D (which is a fixed subset of R3 
fodel and chosen to contain a three-dimensional regular 

geometric volume to simplify analytic procedures). The 
.a1 Spatial Model (Cressie, 1993) can be sample locations s varied continuously over D. However, 
its application to the problem of studying in natural fold-and-thrust belts, most of the available 
variation in thrust sheets. In the most data are two-dimensional. Exceptions to this are thrust 
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sheets where subsurface borehole data are abundant, 
providing the potential for three-dimensional data sets. 
In the Sheeprock thrust sheet, no borehole data are 
available, and the strain data are essentially two- 
dimensional. Therefore, I simplified the generalized 
model described above for the specific problem of strain 
in the Sheeprock thrust sheet such that D is chosen as a 
fixed subset of R2 where R2 represents either the map (or 
the horizontal) plane or the down-plunge projection 
plane; these two cases will be examined separately. 

Finite strain in a thrust sheet is likely to be a spatial or a 
regionalized variable (Matheron, 1963) (i.e. varies in the 
thrust sheet along and across the strike direction of the 
associated thrust fault and, therefore, is a variable that is 
distributed in space) and is neither totally random nor 
totally deterministic. It is a random variable that exhibits 
some similarity of values with neighboring locations (in 
space or time or both, although only space is considered 
here). While the variation of any of the finite strain axial 
ratios (X/Y, Y/Z and X/Z) can be studied, the X/Z axial 
ratio is particularly important as it gives a measure of the 
maximum shortening in the thrust sheet at a given 
location. I will illustrate the spatial statistics approach 
using the X/Z axial ratios measured in the Sheeprock 
thrust sheet; the variation of axial ratios is quantified and 
used to predict axial ratios from unsampled points within 
the sheet. 

O5 
km 1 

Fig. 7. Location of quartzite samples on the simplified geologIca map 
of the southern Sheeprock and the adjacent West Tintic Mountains. 
Late normal faulting and volcanic rocks have been removed and 
geology of the thrust sheet interpreted on the basis of field observations. 

Sampling quartzites in the Sheeprock thrust sheet 

I systematically sampled quartzites on a square grid 
with spacing of approximately 625 m on the map along 
and across the strike of the Sheeprock thrust (Fig. 7). 
Fifty-six samples were collected to fill the grid. The 
sample sites were also placed away from normal and tear 
faults in order to avoid cataclasite samples. Systematic 
sampling on a square grid provides an optimal sampling 
scheme, which achieves minimum sampling variance 
(Ripley, 1981); various triangular, rectangular and 
hexagonal grids would provide other possible optimal 
schemes. However, the spatial statistics technique does 
not require that sampling be carried out along a simple 
grid (Englund and Sparks, 199 1; Cressie, 1993) as long as 
they provide relatively uniform coverage over the 
sampled area (i.e. the set D). The decision to choose the 
sample locations (i.e. s) along some kind of a grid or not 
depends on the quality of exposure, accessibility or 
topography. For areas of excellent exposure and accessi- 
bility with low relief (such as the Sheeprock thrust sheet), 
sampling along a grid ensures uniform coverage and 
optimal data within the sampled area. If the field area 
does not allow a simple grid of data sampling because of 
poor exposure, accessibility or unfavorable topography, 
non-grid data can be collected and used, although care 
should be taken to minimize gaps and clusters of data as 
much as possible (Englund and Sparks, 199 1). 

I chose the size of the sample grid in the Sheeprock 
thrust sheet to be 625 m (which covered a 5 km x 3 km 
rectangular area in the Sheeprock thrust sheet) (Fig. 8) so 
that the number of samples collected from the sheet was 
optimal; too many samples would make strain quantifi- 
cation very difficult because of the large amount of 
human time involved in preparing the samples for 
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Fig. X. XY plot of strain (X/Z axial ratios) data from the Sheeprock 
thrust sheet. The plot gives an idea of the area covered by the sampling 
and the distribution of the X/Z axial ratios. The approximate position of 
the west limb of the synformally folded Sheeprock thrust is shown near 

bottom left of the figure. 
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quantification of strain, whereas too few samples sig- 
nificantly increase the errors in spatial statistics calcula- 
tions. For example, a square grid of side 1250 m yielded 
only about 20 samples from the sheet, and the error 
between calculated and measured values shot up to 35%. 
The sample locations are regularly spaced, and, although 
there are some gaps, a fairly uniform coverage was 
obtained over the rectangular area (Fig. 8). 

Exploratory data analysis (EDA) of X/Z ratios,from the 
Sheeprock thrust sheet 

EDA is a standard statistical procedure which is used 
as the first order of business in any data analysis with the 
purpose of becoming familiar with the data set. It 
involves the use of a combination of statistics and 
graphical displays to look at the range and shape of the 
frequency distribution, to identify data outliers that may 
be erroneous or unrepresentative, and to look at the 
spatial coverage of the data as well as the spatial patterns 
in the data. EDA, therefore, allows the behavior of the 
data and its underlying structure to be tested. 

In general, highest strain values occur in NW-SE 
bands along the two edges of the plot, which indicates 
that high X/Z axial ratios are present close to the thrust 
(Fig. 8). Low X/Z axial ratios occur away from the thrust 
near the middle of the Sheeprock thrust sheet. There are 
no suspect outliers in the data set. The univariate 
descriptive statistics obtained for the data (Fig. 9) 
indicate that the data set is nearly symmetrical about its 
mean since the mean is very close to the median and 
approximately halfway between the minimum and 
maximum values. However, the coefficient of skewness 
(0.6874) indicates a slight positive skewness for the 
distribution. The kurtosis value (4.8335) indicates a 
slightly leptokurtic or slightly more peaked distribution 
than a normal distribution. Thus, the distribution of X/Z 
axial ratios in the Sheeprock thrust sheet is close to a 
normal distribution. The deviations from a normal 
distribution could be caused by the presence of outliers 
and/or lack of sufficient number of samples. One way to 
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Fig. 9. Probability plot of finite strain (X/Z axial ratios) data from the 
Sheeprock thrust sheet. The plot shows that the X/Z axial ratios 
approximate a normal population. Univariate descriptive statistics for 
the data indicates a positively skewed, slightly leptokurtic distribution. 

test this is to construct a probability plot (Fig. 9): a 
cumulative frequency plot scaled so that a normal 
distribution plots as a straight line. The probability plot 
for the X/Z axial ratios in the Sheeprock thrust sheet 
(Fig. 9) indicates that the distribution approximates a 
normal population. Outliers are, however, present near 
both the high and low X/Z axial ratios. The nature of the 
distribution (whether a distribution is normal, log- 
normal, binomial, etc.) does not affect the way in which 
the spatial statistics analysis is carried out, except that for 
highly skewed distributions such as the log-normal 
distribution, it is more useful to use the spatial statistics 
method on log-transformed data. Since the distribution 
for the X/Z axial ratios in the Sheeprock thrust sheet 
approximates a normal population, no transformations 
on the data are required. The outliers were retained in the 
data set to investigate the amount of error introduced in 
the analysis when all 56 samples used to estimate X/Z 
axial ratios in the Sheeprock thrust sheet are considered 
valid samples. 

Vuriogram analysis of X/Z axial ratios in the Sheeprock 

thrust sheet 

A variogram is defined as a plot of the variance (one- 
half the mean squared difference) of paired sample 
measurements as a function of the distance and direction 
between samples. Typically, all possible sample pairs in a 
given direction are examined, and grouped into classes 
(lags) of approximately equal distance. Variograms 
provide a method of quantifying the commonly observed 
relationship that samples close together will tend to have 
more similar values than samples far apart. The compu- 
tation, interpretation and modeling of variograms is an 
evaluation of the spatial correlation structure of the 
sample data set. Assuming that a X/Z axial ratio 
measurement at any point in the thrust sheet represents 
nearby locations better than locations farther away, 
variogram analysis helps us decide how well a measure- 
ment represents another location a specific distance and 
direction away. Variogram analysis is the key to the 
spatial statistics method and kriging; it is the most 
important step in creating the comprehensive, quantita- 
tive data set that this analysis aims to create. 

For the purpose of variogram analysis, I considered 
the measured X/Z axial ratios to be represented by the 
probabilistic function Z(sJ, si being the sample locations. 
I next evaluated the relationship between the value of Z 
at any given point and the value of the other II- 1 points 
(n= 56 here). Given that the difference in values of Z 
between any two points depends only on the distance 
between them and their relative orientation (i.e. the 
separation vector h), the semivariogram is defined by 
the following formula (Cressie, 1993): 

Y(h) = & z[Z(Si + h) - Z(Si)12, 
1=1 

(1) 
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where N is the number of pairs (separated by the distance 
lhl) considered. Semivariograms plot the variance of pairs 
of measurements against the distances separating the 
pairs. If measurements at all possible sample locations 
within the thrust sheet were available, the variance of all 
pairs of measurements that satisfy each combination of 
distance and direction could be computed and the true 
variogram for a site obtained. In practice, however, it is 
not possible to have measurements at all locations and, 
with limited data, only a subset of the true variogram can 
be obtained. This is termed the experimental semivario- 
gram. The variance for groups of pairs of measurements 
in class intervals of similar distance and direction was 
computed. A graph of variances vs distance for a 
particular direction was plotted, and a model curve was 
fitted to the graph (Fig. 10); the model is then an 
approximation of the true variogram. 

Experimental semivariograms constructed to display 
spatial variation of a variable in a given direction are 
termed ‘directional semivariograms’. In constructing a 
directional semivariogram, a tolerance is usually set on 

the magnitude and the direction of the separation vector 

h 
* 

ohT., 

0 2 4 6 8 

Distance between samples (h) - 

Fig. IO. Construction of a direction semivariogram. Pairs considered 
for vatiogtam calculation for h = 2 and E-W orientation is shown in (a). 
Variogram model fit to semivariogram values calculated for different 

values of h is shown in (b). Circles represent sample sites. 
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Fig. 1 I. Definition of the distance and angular tolerances for the 
separation vector h. The distance tolerance is defined as the tolerance on 
the length of the separation vector and the angular tolerance is the 
tolerance on the orientation of the separation vector. Calculation of a 
variogram with an angular tolerance of 90” (or a= I80’) is equivalent to 
averaging variogtams calculated in all directions: the omnidirectional 

semivatiogram. Circles represent sample sites. 

h (Fig. 11). This ensures that slight variations in distance 
and orientation between sample locations do not affect 
the semivariogram computing process. When sample 
stations are irregularly spaced, setting a tolerance limit 
on h becomes essential. 

Calculating a variogram with an angular tolerance 
of 90’ is equivalent to averaging variograms calculated 
in all directions, and is referred to as an omzidirec- 
fionaf scmivariogram. The angular tolerance of 90” on 
either side of any specified direction line allows all 
pairs to be included in the computation of the 
semivariogram regardless of direction. This maximizes 
the number of pairs in each distance class and gives the 
smoothest or best experimental variogram. Therefore, 
semivariogram models fitted to the omnidirectional 
experimental semivariogram give the best estimate of 
model parameters for the semivariogram model. For 
the XjZ axial ratios in the Sheeprock thrust sheet, the 

omnidirectional semivariogram is shown in Fig. 12(a). 
Once an initial estimate of the omnidirectional semi- 
variogram model is obtained, the model must next be 
tested to see how it fits directional experimental 
semivariograms. 

1 applied this procedure to the Sheeprock strain data 

(Fig. 12a) and examined linear, spherical, exponential. 
power and Gaussian semivariogram models. On visual 
examination, the exponential model seemed to fit the 
omnidirectional and directional experimental semivario- 
grams the best. To double check this, I carried out the 
entire spatial statistics analysis using each of the 
semivariogram models and compared the errors 

obtained between the measured and predicted models. 
The exponential model (Fig. 12b) gave the best results. 
This confirmed the initial observation that the best fit on 
the omnidirectional experimental semivariogram for the 
X/Z axial ratios in the Sheeprock thrust sheet was given 
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Fig. 12. Omnidirectional semivariogram for X/Z axial ratios in the 
Sheeprock thrust sheet. The experimental semivariogram is shown in 
(A) and the variogram model fit in (B). The exponential model (sill 0.008 
and range 750 m) gives the best fit on the experimental semivariogram. 

by the exponential model defined by the following 
equation: 

‘u’(lhj) = c[l -f?] (2) 

where c is the positive variance contribution or sill value, 
and a is the practical range, i.e. the distance at which the 
semivariogram value is 95% of the sill. This model 
reaches its sill asymptotically and has a linear behavior at 
the origin. The omnidirectional semivariogram for the 
X/Z axial ratios in the Sheeprock thrust sheet is an 
exponential model where c= 0.008 and a= 750 m and 
can be written as: 

#zl) = 0.008[1 - &. (3) 

The directional variograms along and across the 
transport direction of a thrust sheet are most important 
in finite strain studies in thrust sheets. Thus, the 
omnidirectional semivariogram model defined above 
must fit the two directional variograms for it to be a 
valid model. Good fits are obtained when the exponential 
omnidirectional semivariogram is superimposed on the 
transport parallel and transport perpendicular semivar- 
iograms (Fig. 13). Thus, the exponential model (equation 
(3)) describes the variation of finite strain (XZ axial 
ratios) in the Sheeprock thrust sheet in plan. It is 
important to note at this point that a semivariogram 

y ([hi) = 0.008 * [ I- e-““‘“J 
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Fig. 13. Directional semivariogram for X/Z axial ratios in the 
Sheeprock thrust sheet. Semivariograms parallel and perpendicular to 
the transport direction are shown in (A) and (B), respectively. The 
exponential model (sill 0.008 and range 750 m) used to fit the 
omnidirectional semivariogram gives good fit on the directional 

semivariograms. 

must be calculated anew for each data set as the 
variogram model is a custom fit to the data set. This 
spatial model can be now used to predict XZ axial ratios 
from unsampled points within the sample area by 
kriging. 

Spatial prediction and kriging 

1 used a probabilistic model to quantify the strain 
variation within a thrust sheet by constructing semivar- 
iograms. In this model, the available sample data were 
viewed as the result of some probabilistic process. This 
conceptualization is a useful one for the problem of 
estimating values at unknown locations. It not only 
allows us to make predictions about how apparently 
random processes behave where we have not sampled 
them but also gives us some ability to gauge the accuracy 
of the estimates and assign confidence intervals to them. 
In practice, we will use a probability model and define the 
best possible estimator and use it to carry out point 
estimations of finite strain values from any point in the 
Sheeprock thrust sheet. 

Spatial estimator 

Ordinary kriging has been described as the ‘best linear 
unbiased estimator (BLUE)’ (Isaaks and Srivastava, 
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1989) for point estimations. Ordinary kriging is ‘linear’ 
because its estimates are weighted linear combinations of 
the sampled data. It is ‘unbiased’ because it tries to reduce 
the mean residual or error to 0. It is ‘best’ because it aims 
at minimizing the variance of the errors. 

Since we are not working with a data set that includes 
all possible strain measurements from the Sheeprock 
thrust sheet, the true mean error and the error variance of 
the data are unknown. The best that we can do in this 
situation is to build a probabilistic model of the data and 
work with the average error and the error variance for the 
model. For ordinary kriging, we use a model in which 
bias and the error variance can both be calculated, and 
then choose weights for the nearby samples that ensure 
that the average error for the model is exactly 0 and the 
modeled error variance is minimized. 

Since ordinary kriging is a linear estimator, at every 
point where we do not have a sample, we will estimate the 
unknown true value using a weighted linear combination 
of the available samples: 

z* = + &Z,, (4) - 
i=l 

where n is the number of samples (or known values of the 
finite strain variable). For the estimates to be unbiased, 
the weights must add to 1 (Isaaks and Srivastava, 1989): 

2 ii = 1. (5) 
i=l 

Assuming an unbiased estimator, the error variance, 
u2, of a set of k estimates can be written as: 

(6) 

where Zj and Zy are actual and estimated finite strain 
values at k estimation points. Once again, since the actual 
values are unknown, we turn to probabilistic models and 
define the variance of modeled error instead. Minimizing 
the modeled error variance leads to the following 
ordinary kriging equation (Isaaks and Srivastava, 1989): 

C j_,y;, - w = ;‘,“i = 1, ., I? (7) 
/=I 

where p is a Lagrange parameter, y,j is the variogram 
model between two known points i andj, whereas ~~0 is 
the variogram model between a known point i and the 
location to be estimated. In matrix form 

and the solution is 

y;@ = y,o (8) 

where 

1 i’,/ = 

;‘I1 . 2’1,z 1 

I analyzed finite strain data (X/Z axial ratios) from the 
Sheeprock using this approach and then prepared a 
contoured map of the X/Z axial ratios (Fig. 14a) from 
the results obtained by ordinary kriging using the GEO- 
EAS 1.2.1 software. An interpolated image map was also 
prepared (Fig. 14b). However, at this stage, we also need 
to know how well the estimation works. This can be 
achieved by cross-validation. which involves estimating 
values at each sampled location in an area by kriging with 
the neighboring sample values (excluding the value of the 
point being estimated). X/Z axial ratios were estimated in 
this way at each of the 56 sample locations in the 

Sheeprock thrust sheet. The estimates were compared 
with the measured values in order to calculate the error in 
estimation. Errors between the estimated and measured 
values were evaluated at different positions in the 
distribution (Table 1). Errors increased at the minimum 
and maximum ends of the distribution of X/Z axial 
ratios. This is to be expected because the distribution 
deviates from a normal distribution near the minimum 
and maximum values (Fig. 9). Estimation errors for the 
rest of the distribution are approximately within lo/u 
(Table 1). Thus, the variogram model used to quantify 
the finite strain variation in the Sheeprock thrust sheet is 
a reasonably accurate one. Ordinary kriging performed 
using the variogram model also results in fairly accurate 
estimations of the X/Z axial ratios from unsampled 
points in the thrust sheet. However, this also raises an 
important question; how would anomalous values (e.g. 
from fault zones) affect the data analysis? The key to 
dealing with an anomalous value in the analysis would be 
to determine whether the value is part of the population 
being analyzed or part of a different population. EDA 
would be helpful in identifying this. If the anomalous 
value is part of a different population, we should expect 
large errors in the predicted strain values in the vicinity of 
the anomalous value; this statement can be substantiated 
by the high errors seen at the minimum and maximum 
ends of the distribution of X/Z ratios (Table I) where 
deviation from the normal population is most evident. 
The best way to deal with the situation would be to 
remove the anomalous values from the data set and 
analyze each population separately (e.g. treat strain in a 
fault zone as a separate population from the rest of the 
thrust sheet). 

Results from the analysis (Fig. 14) indicate that. in plan 
view, finite strain (X/Z axial ratios) decreases away from 
the Sheeprock thrust. An increase in the X/Z axial ratios 
is also observed along the strike of the fault from NW to 
SE. Studies of kinematics of fold and thrust belts involve 
construction of retrodeformable balanced cross-sections. 
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Fig. 14. (a) Contour plot of kriged X/Z axial ratios in the Sheeprock thrust sheet. X/Z axial ratios are higher near the thrust 
and decrease towards the center of the thrust sheet. (b) Interpolated image map of the kriged X/Z axial ratios in the Sheeprock 
thrust sheet. Higher strains are seen near the Sheeprock thrust. Strain also increases along strike of the Sheeprock thrust from 
NW to SE. Least strain is observed near the center of the thrust sheet. The west limb of the folded Sheeprock thrust strikes 

approximately NW-SE. 
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Table I. Error analysis 

Minimum 
25th percentile 
Median 
Mean 
75th percentile 
Maximum 

Measured Estimated Error % 

1.067 1.160 8.72 
1.225 1.238 I .06 
1.284 I.273 0.86 
I .283 1.278 0.39 
1.319 1.140 1.14 
1.604 I.429 10.90 

Thus, the nature of strain variation in the transport or the 
down-plunge projection plane is important. The spatial 
statistics method was applied to samples in the hanging 
wall of the Sheeprock thrust sheet (Fig. 3) to investigate 
the applicability of the method to cross-sectional data. 
First, the sample locations in the map (Fig. 7) were 
projected along the axis 4”, 325” and plotted on the down- 
plunge projection of the structure of the Sheeprock thrust 
sheet. Next, the three-dimensional strain ellipsoids 
calculated at each of the sample locations were projected 
along the axis 4“, 325’ using the algorithm described by 
Gendzwill and Stauffer (1981). The axial ratios of the 
projected ellipses were used at each sample location in the 
down-plunge projection. An exponential model was once 
again used to model the strain variation in the sheet. An 
interpolated image diagram was constructed from the 
kriged data (Fig. 3). 

The interpolated image diagram (Fig. 3) documents a 
decrease in strain as we move away from the thrust higher 
up into the thrust sheet. This trend has been recorded in 
thrust sheets worldwide (Hossack, 1968, 1978; Coward 
and Kim, 1981; Ramsay et al., 1983; Mitra, 1994). There 
is also a high-strain region seen near the hinge of the fault 
propagation antiform in the hanging wall of the Shee- 
prock thrust. A detailed discussion of the strain patterns 
in the Sheeprock thrust sheet produced by the method 
and its geological implications are discussed in the 
companion paper in this volume (Mukul and Mitra, 
1998c). 

DISCUSSION 

Quantification of strain variation and estimation of 
finite strain from unsampled points in a thrust sheet by 
kriging facilitates the use of strain and strain variation 
data for a number of possible applications. It improves 
the accuracy of retrodeformable balanced cross-sections 
by providing a detailed and improved description of 
strain and strain variation in thrust sheets to account for 
the pure strain component of the total displacement field. 
It also facilitates the use of strain and strain variation 
data in modeling natural structures. The spatial statistics 
algorithm looks at the overall strain variation in a thrust 
sheet without considering individual factors that cause 
the variation. Strain variation in a thrust sheet is caused 
by a complex interplay of variations in lithology, grain- 
size, deformation mechanisms, pressure, temperature, 

stress and strain rate. It is not possible to isolate the 
variations caused by each of these factors. The spatial 
statistics approach allows us to overcome the complexity 
of the system by defining a probabilistic model using the 
measured strain values. This approach is a valid way of 
simplifying the problem. 

The results obtained from this approach will also serve 
as a cross-check on results obtained from independent 
numerical models of evolution of fold and thrust belts. 
Valid numerical models must approximate the strain 
variation patterns obtained from the spatial statistics 
approach. Strain variation functions obtained using 
spatial statistics can be included in the numerical 
modeling process. For example, the semi-variogram 
model can be used as the interpolation function in a 
finite element numerical model for the deformation in the 
sheet. 

The spatial statistics approach, therefore, offers a 
systematic method for studying strain variation in 
penetratively deformed thrust sheets. The main strength 
of the method lies in the fact that it can quantify strain 
variation in thrust sheets and predict strain at unsampled 
points within the sampled region in the thrust sheet. 
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APPENDIX 

Description of procedures for Strain analysis 

(1) A square sampling grid is selected on the basis of preliminary 
fieldwork in the Sheeprock thrust sheet. 

(2) Oriented quartzite samples are collected along the grid making 
sure that cataclasites from the tear faults and normal faults were not 
sampled and that three mutually perpendicular sections could be 
obtained from each sample. The orientation of bedding, cleavage or 
any planar structure at the sample site was also recorded. 

(3) Three mutually perpendicular sections are cut from each 
quartzite sample and made chips for preparation of thin-sections. The 
positions of the chips on the cut surfaces were carefully marked. 

(4) Colored photomicrographs were taken from each of the three 
thin-sections, In shooting the photomicrographs, I tried to ensure that 
the edges of the glass slide were parallel to the field of view so that the 
photomicrographs are oriented parallel to the glass slide and orienta- 
tions of lines measured on the plane of the photomicrographs can be 
directly transferred to the sample face from which the slide was made. 

(5) A black and white tracing of the quartz grains is prepared for each 
of the three mutually perpendicular thin sections for each sample (e.g. 
Fig. 5). The tracing was used to calculate the co-ordinates of the center 
and area of each grain in the tracing by using JAVA Image Analysis 
Software (Jandel Video Analysis Software, 65, Koch Road, Corte 
Madera, CA 94925, U.S.A.) installed on an IBM-PC with Video camera 
and PCVISION plus Frame Grabber (Imaging Technology Inc). First, I 
put the black and white tracing under the camera of the Image Analysis 
system and activated it. An image of the tracing was seen on the video 
monitor. I then moved the tracing around so that theedges of the tracing 
were parallel to the edges of the monitor and the orientation of the long 
axis of the calculated strain ellipses can be accurately recorded and 
transferred to the corresponding cut section on the quartzite sample. 
JAVA recognizes individual grains in the tracing as areas consisting of 
white pixels surrounded by grain boundaries consisting of black pixels. I 
also used the JAVA software to smoothen out the image and adjust the 
contrast between the grains and the grain boundaries in such a way that 
the least possible thickness of grain boundaries is obtained without 
disrupting the continuity of the grain boundaries (so that the grains do 
notjoin together and compromise the accuracy of the process). Once the 
image was satisfactorily adjusted, an ‘intensity threshold’ was set for 
grain counting to begin. At the end of grain-counting, JAVA 
determined the centroids and areas of individual grains and created an 
ASCII file containing the X and Y co-ordinates of the centroids and the 
areas of the along with a number of other parameters. The ASCII file 
needs to be edited so that only the X and Y co-ordinates of the centroids 
and the area of the grains are saved in the ASCII (.PRN) file created by 
JAVA. 

(6) Data files are read into the program ANNGRAIN (McNaught, 
1990) which calculates the two-dimensional strain ellipse using the 
modified normalized Fry Method. I recorded the axial ratio (R) and the 
orientation (0) of the long axis of the calculated finite strain put out by 
ANNGRAIN. Thus, three finite strain ellipses, their axial ratios and 
long axes orientations, were obtained for the three mutually perpendi- 
cular sections from each quartzite sample. 

(7) The strain ellipses determined for three mutually perpendicular 
sections must be now checked for strain compatibility. The strain 
compatibility test examines whether or not the three sectional strain 
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ellipses calculated for each sample lie on the surface of any real ellipsoid. 
If strain compatibility is satisfied, deformation occurred in a body 
without discontinuities or holes and the deformed body was coherent. I 
checked for strain compatibility using the ‘2D-3D Compatibility’ 
program (DePaor, 1990). In most of the samples I examined, strain 
compatibility was satisfied by the sectional strain ellipses. A few were 
made compatible by adjusting the area stretch factor in the sectional 
strain ellipses as recommended by DePdor (1990). 

(8) The strain ellipsoid at each sample location is calculated for each 
quartzite sample using the three sectional ellipses. To do this, I first 
oriented the quartzite sample in the laboratory with the help of the 
orientation mark made in the field and measured the attitude of the 
three planes on which the strain ellipses were computed. The strike lines 
and the dip directions for each plane were also sketched on to the 
corresponding rock surface. The long axes of the three strain ellipses 
were sketched on to the corresponding planes using the computed q 
values. 1 calculated the rakes (angle and direction) of the long axes of the 

three strain ellipsoids on the corresponding planes and then, using a 
stereonet, I calculated the attitude of the long axes of the three strain 
ellipses. Care must be taken when deciding on the rake directions of the 
long axes of the strain ellipses on planes which are overturned. 

(9) The three-dimensional strain ellipsoid is calculated at each sample 
location by using the program 2D+3D which is distributed as part of 
the MacStrain 2.4 package written by K. Kanagawa at the University of 
Tokyo. This program determines strain ellipsoids from two-dimen- 
sional section data on any three sections that are not necessarily 
orthogonal. This program requires axial ratios and long-axis orienta- 
tions of average marker ellipses on three sections with known 
orientations. The strain ellipsoid calculation in the program is based 
on Shimamoto and Ikeda (1976) and Wheeler’s tensor algebraic method 
(Wheeler, 1986). Kanagawa’s program also calculates a normalized 
final average ellipsoid using Milton’s method (Milton, 1980) from data 
on three non-orthogonal sections which I have used as the representa- 
tive finite strain ellipsoid at each sample location. 


